skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhandari, A V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Paleomagnetic, rock magnetic, or geomagnetic data found in the MagIC data repository from a paper titled: New archaeointensity results from archaeological sites and variation of the geomagnetic field intensity for the last 7 millennia in Greece 
    more » « less
  2. Abstract The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60–80 t capable of probing the remaining weakly interacting massive particle-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in136Xe using a natural-abundance xenon target. XLZD can reach a 3σdiscovery potential half-life of 5.7 × 1027years (and a 90% CL exclusion of 1.3 × 1028years) with 10 years of data taking, corresponding to a Majorana mass range of 7.3–31.3 meV (4.8–20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  3. Abstract Understanding propagation of scintillation light is critical for maximizing the discovery potential of next-generation liquid xenon detectors that use dual-phase time projection chamber technology. This work describes a detailed optical simulation of the DARWIN detector implemented using Chroma, a GPU-based photon tracking framework. To evaluate the framework and to explore ways of maximizing efficiency and minimizing the time of light collection, we simulate several variations of the conventional detector design. Results of these selected studies are presented. More generally, we conclude that the approach used in this work allows one to investigate alternative designs faster and in more detail than using conventional Geant4 optical simulations, making it an attractive tool to guide the development of the ultimate liquid xenon observatory. 
    more » « less
  4. Abstract Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With$$40\,\textrm{t}$$ 40 t of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($$0\upnu \upbeta \upbeta $$ 0 ν β β ), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of$${}^{137}$$ 137 Xe, the most crucial isotope in the search for$$0\upnu \upbeta \upbeta $$ 0 ν β β of$${}^{136}$$ 136 Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background. 
    more » « less
  5. Abstract The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector. 
    more » « less
  6. Abstract This article reports on the inclusive production cross section of several quarkonium states, $$\textrm{J}/\psi $$ J / ψ , $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) , $$\Upsilon \mathrm (1S)$$ Υ ( 1 S ) , $$\Upsilon \mathrm{(2S)}$$ Υ ( 2 S ) , and $$\Upsilon \mathrm{(3S)}$$ Υ ( 3 S ) , measured with the ALICE detector at the LHC, in pp collisions at $$\sqrt{s} = 5.02$$ s = 5.02  TeV. The analysis is performed in the dimuon decay channel at forward rapidity ( $$2.5< y < 4$$ 2.5 < y < 4 ). The integrated cross sections and transverse-momentum ( $$p_{\textrm{T}}$$ p T ) and rapidity ( $$y$$ y ) differential cross sections for $$\textrm{J}/\psi $$ J / ψ , $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) , $$\Upsilon \mathrm (1S)$$ Υ ( 1 S ) , and the $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) -to- $$\textrm{J}/\psi $$ J / ψ cross section ratios are presented. The integrated cross sections, assuming unpolarized quarkonia, are: $$\sigma _{\textrm{J}/\psi }$$ σ J / ψ  ( $$p_{\textrm{T}} <20$$ p T < 20  GeV/c) = 5.88 ± 0.03 ± 0.34 $$ ~\mu $$ μ b, $$\sigma _{\psi \mathrm{(2S)}}$$ σ ψ ( 2 S )  ( $$p_{\textrm{T}} <12$$ p T < 12  GeV/c) = 0.87 ± 0.06 ± 0.10 $$~\mu $$ μ b, $$\sigma _{\Upsilon \mathrm (1S)}$$ σ Υ ( 1 S )  ( $$p_{\textrm{T}} <15$$ p T < 15  GeV/c) = 45.5 ± 3.9 ± 3.5 nb, $$\sigma _{\Upsilon \mathrm{(2S)}}$$ σ Υ ( 2 S )  ( $$p_{\textrm{T}} <15$$ p T < 15  GeV/c) = 22.4 ± 3.2 ± 2.7 nb, and $$\sigma _{\Upsilon \mathrm{(3S)}}$$ σ Υ ( 3 S )  ( $$p_{\textrm{T}} <15$$ p T < 15  GeV/c) = 4.9 ± 2.2 ± 1.0 nb, where the first (second) uncertainty is the statistical (systematic) one. For the first time, the cross sections of the three $$\Upsilon $$ Υ states, as well as the $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) one as a function of $$p_{\textrm{T}}$$ p T and $$y$$ y , are measured at $$\sqrt{s} = 5.02$$ s = 5.02  TeV at forward rapidity. These measurements also significantly extend the $$\textrm{J}/\psi $$ J / ψ $$p_{\textrm{T}}$$ p T reach and supersede previously published results. A comparison with ALICE measurements in pp collisions at $$\sqrt{s} = 2.76$$ s = 2.76 , 7, 8, and 13 TeV is presented and the energy dependence of quarkonium production cross sections is discussed. Finally, the results are compared with the predictions from several production models. 
    more » « less